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Abstract. Using a recently developed Green’s function formalism, we have calculated the spin-
wave spectra and dispersions in Ni and Fe. For Ni(100), the dispersion exhibits two branches
as observed experimentally. The calculated higher optical branch is found to be too high in
energy when the standard local density approximation band-structure is used but a very good
agreement with the measured dispersion is obtained when the exchange splitting is reduced, to
correspond to the experimental value of the exchange splitting. We also found a double branch
along Ni(111) which is not observed experimentally. For Fe, the calculated dispersion surprisingly
exposes a gap midway along �–N in disagreement with experimental data. However, an analysis
of the temperature-dependent magnetization has predicted a similar gap at the same wave vector,
supporting the present calculations.

1. Introduction

In a previous work [1] (hereafter referred to as paper I) we developed a formalism for calc-
ulating spin-wave spectra based on the Green function method. The formalism does not rely
on any assumption about the spin nature of the electrons being itinerant or localized. This
is in contrast to the common frozen-magnon procedure which usually maps the spin-wave
problem to the Heisenberg Hamiltonian with the assumption of localized spins [2–6]. In the
simplest approximation, the formalism proposed in the previous work reduces to the well-
known random-phase approximation (RPA) [7–11]. The method, however, is rather general.
The interactions among the electrons naturally turned out to be nonlocal. Another advantage of
the formalism is that it gives not only the spin-wave dispersions but also the spectra as functions
of wave vectors and frequencies. This allows the determination of spin-wave lifetimes as well
as multiple branches which it is not possible to obtain within the frozen-magnon approach.

Spin-wave spectra can also be calculated using time-dependent density functional theory
(TD DFT). The most recent calculation using this method was performed by Savrasov [12]
for Fe, Ni, and Cr. Although the method is formally exact, the calculated spectra may depend
significantly on the quality of the exchange–correlation potential. Our formalism shows that
the interactions among the electrons can be very nonlocal and such a nonlocality can be
difficult to take into account using a constant exchange–correlation kernel derived from the
local density approximation (LDA). In electronic structure calculations, the major part of the
effective one-particle potential is the Hartree potential and a relatively crude approximation
for the exchange–correlation potential, such as that of the LDA, is sufficient in many cases. In
calculating spin-wave spectra on the other hand, it is the derivative of the exchange–correlation
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potential with respect to the density which is the main ingredient. Thus, a simple approximation
may not be adequate and not surprisingly, the spin-wave dispersions calculated within the LDA
using the frozen-magnon approach often show a large discrepancy with experiment.

In the present work, we apply our formalism to the classical examples of spin waves
in Ni and Fe which have been studied by a number of authors using different approaches.
These systems provide a stringent test for the applicability of the formalism. The experimental
spin-wave dispersion of Ni [13] shows a number of interesting features which have not been
fully explained. A prominent feature is the presence of two branches, known as the ‘acoustic’
and ‘optical’ branches. Early and more current studies did succeed in reproducing the two
branches but there are some problems [9, 12, 14]. In earlier calculations, for some wave
vectors, the intensity of the acoustic branch is higher than that for the optical branch, whereas
experimentally it is the other way round [14]. More recent and probably the most up-to-date
calculation using TD DFT gives a dispersion showing significant deviation from experiment
for the optical branch [12]. A possible explanation is that the exchange–correlation kernel
derived from the LDA is not adequate to describe the interactions among the spins. Another
possibility is that the Kohn–Sham band-structure is substantially in error as compared with the
photoemission (quasiparticle) band-structure. In particular, the exchange splitting, which is
relevant for determining the spin-wave dispersion, is overestimated by the LDA by a factor of
two [15]. The origin of the discrepancy in the optical branch is investigated in the present work.

For Fe, existing calculations [9, 12, 16–19] have been successful in reproducing the
experimental dispersion [20, 21], at least for small momentum transfer. However, a very
interesting analysis of the temperature-dependent magnetization of Fe predicts a gap in the spin-
wave dispersion at about 0.74 Å−1 which is necessary to explain the experimental magnetization
data [22]. Such a crossover gap between the acoustic and optical branches is in fact not observed
experimentally since the accuracy of the experimental data is often limited by experimental
broadening, background contributions, and random noise. Numerical calculations on the other
hand can be performed with a rather high accuracy which allows us to observe features which
may not be easily seen experimentally. As will be shown later, our calculations also predict a
gap at almost exactly the same wave vector as predicted by Ododo and Anyakoha [22].

Another unsettled issue common to Ni and Fe is that of whether the dispersion extends to
the zone boundaries (ZB). Experimentally, the signal from neutron scattering is diminishing as
one approaches the ZB. This is particularly the case for the lower acoustic branch in Ni. On the
other hand, neutron scattering investigation of Fe [21] predicts the magnon to exist out to the
ZB. However, no information about the intensity was given and the effects of the experimental
resolution were not properly taken into account. Previous numerical calculations, however,
predicted the existence of spin-wave excitations right to the ZB. This issue is also investigated
in the present work.

2. Theory

2.1. Basic relations

Spin excitation spectra can be measured by inelastic neutron scattering experiments. The
neutron scattering cross section can be directly related to the imaginary part of the magnetic
response function (see the appendix). The spin-wave excitation spectrum is given by the
following spectral function:

S−+(r, r′, ω) ≡ Z−1
∑
jk

e−β(Ej−µN)(1 − e−βω)〈j |σ̂−(r)|k〉〈k|σ̂ +(r′)|j〉δ(ω − Ek + Ej).

(1)
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The physical meaning of σ̂ +(r) is that it increases the spin of an electron at r by one. The
spin of the states |k〉 must therefore be larger by one than that of the states |j〉, i.e. the states
|k〉 contain a spin-wave excitation. Thus, a peak in S−+ may be identified with a spin-wave
excitation. The quantity R−+ is related to the response functions.

First we briefly sketch some ideas discussed in paper I. The charge and magnetic τ -ordered
response function is defined by

Rij (1, 2) ≡ δ〈σ̂ i(1)〉
δϕj (2)

(2)

where i, j = 0, x, y, z. The external field ϕj corresponds to a scalar one for j = 0 and to the
magnetic field for j = x, y, z. Here, 1 ≡ (r, τ ); α and β denote the spin. The spin density is
given by

〈σ̂ i(1)〉 = σ iβαGαβ(1, 1+) (3)

where a repeated index or variable implies a summation or integration provided that the index
or variable does not appear on the other side of the equation. Gαβ is the Matsubara (temperature)
Green function. The Pauli spin matrices are given by

σ 0 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σ z =

(
1 0
0 −1

)
. (4)

The exact expression for the response function reads

Rij (1, 2) = σ iβαGαµ(1, 4)
[
δ(4 − 5)ε−1

j,µν(4, 2) +
δ�µν(4, 5)

δϕj (2)

]
Gνβ(5, 1+) (5)

where we have defined

ε−1
j,αβ(1, 2) ≡

[
σ
j

αβδ(1 − 2) + σ 0
αβ

δVH (1)

δϕj (2)

]
. (6)

Here VH denotes the Hartree potential and � the electron self-energy. Naturally, without
δ�/δϕ there will be no magnetic response since the response function reduces to that of the
time-dependent Hartree approximation.

Diagrammatically, the response function consists of a closed electron–hole diagram
(bubble) with a spin-flip centre at one end and an electron–hole diagram with the nonlocal
vertex δ�/δϕ inserted. We now take into account the vertex with the self-energy within the
GWA [23] and only consider the change in G. It is necessary to allow the Green function to
have nondiagonal components in spin space, for otherwise there would be no spin fluctuations
in the xy-directions. Thus

δ�αβ(1, 2)

δϕj (3)
= −δGαβ(1, 2)

δϕj (3)
W(1, 2)

= − W(1, 2)Gαµ(1, 4)
{
ε−1
j,µν(4, 3)Gνβ(4, 2) +

δ�µν(4, 5)

δϕj (3)
Gνβ(5, 2)

}
. (7)

This is an integral equation for the vertex which can be solved formally as follows:

{
δµαδνβδ(4 − 1)δ(5 − 2) + W(1, 2)Gαµ(1, 4)Gνβ(5, 2)

} δ�µν(4, 5)
δϕj (3)

= − W(1, 2)Gαµ(1, 4)ε−1
j,µν(4, 3)Gνβ(4, 2). (8)

Defining

Dαβ,µν(1, 2|3, 4) ≡ δµαδνβδ(3 − 1)δ(4 − 2) + W(1, 2)Gαµ(1, 3)Gνβ(4, 2) (9)
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�j,αβ(1, 2|3) ≡ Gαµ(1, 4)ε−1
j,µν(4, 3)Gνβ(4, 2) (10)

Nj,αβ(1, 2|3) ≡ −W(1, 2)�j,αβ(1, 2|3) (11)

the vertex is given by (shown diagrammatically in figure 1)

 j,αβ(1, 2|3) ≡ δ�αβ(1, 2)

δϕj (3)
= D−1

αβ,µν(1, 2|4, 5)Nj,µν(4, 5|3). (12)

When substituted into equation (5), this vertex correction results in ladder diagrams. In fact, the
resulting response function is equivalent to the well-known RPA magnetic response function.

�
1

2

3 = �
2

1

3,4 + �
4

5

3

2

1

Figure 1. Feynman diagrams for the vertex in equation (7). The solid line represents the Green
function, the wiggly line the screened interaction W , and the small circle ε−1

j .

2.2. Local approximation

Recent TD DFT calculations [12] show significant deviation from experiment, especially for
Ni, and it was argued that the main source of the problem is the local and static nature of the
exchange–correlation functional. On the other hand, the results for Fe are in good agreement
with experiment. We know that the band-structure of Ni in the LDA suffers from a few
problems. Relevant to our calculations is the fact that the exchange splitting is overestimated
by a factor of two whereas this is not the case for Fe. It is likely that it is the error in the
exchange splitting in Ni that is responsible for the poor agreement for the optical branch in
the spin-wave dispersion. In order to investigate this problem we will solve for the response
function (equation (5)) using a local and static screened interaction W .

If we transform the vertex equation into Fourier space using a static screened potential, it
becomes[
δ(1 − 4)δ(2 − 5)− W(1, 2)Kαβ(12, 45;ωm)

]
 j,αβ(4, 5, 3;ωm)

= 1

β
W(1, 2)σ jαβKαβ(12, 33;ωm) (13)

and where we assume that the Green function is now diagonal in spin space. νm denotes
a Matsubara frequency for fermion propagators and for bosons we use ωn as a convention.
Hereafter 1 ≡ r1.

We also introduce the kernel K as

Kαβ(12, 45;ωm) = − 1

β
Gα(1, 4;ωm + νk)Gβ(5, 2; νk). (14)

Using a noninteracting Green function:

Gα(1, 2; νm) = ψknα(1)ψ∗
knα(2)

iνm − εknα (15)

the summation over frequencies in the kernel can be performed analytically (see e.g. p 272 of
reference [24]), giving

Kαβ(12, 45;ωm) = ψknα(1)ψ
∗
k′n′β(2)ψ

∗
knα(4)ψk′n′β(5)

f (εknα)− f (εk′n′β)

iωm + εk′n′β − εknα . (16)
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Here {ψkn, εkn} are the LDA Bloch states and the corresponding eigenvalues, respectively. If
we now use the local approximation and for simplicity assume zero temperature, the kernel
becomes

Kαβ(11, 44;ωm) =
∑
kk′

occ∑
n

unocc∑
n′

ψknα(1)ψ∗
k′n′β(1)ψk′n′β(4)ψ∗

knα(4)

(iωm + εk′n′β − εknα)

− ψknβ(1)ψ∗
k′n′α(1)ψk′n′α(4)ψ∗

knβ(4)

(iωm − εk′n′α + εknβ)
. (17)

The kernel is continued analytically to real frequencies ωn → ω + iδ . Finally we define
S as follows:

Sαβ(1, 2;ω) =
∑
kk′

occ∑
n

unocc∑
n′
ψknα(1)ψ

∗
k′n′β(1)ψk′n′β(2)ψ

∗
knα(2)δ(ω + εk′n′β − εknα)

− ψknβ(1)ψ
∗
k′n′α(1)ψk′n′α(2)ψ

∗
knβ(2)δ(ω − εk′n′α + εknβ). (18)

Since S is real we can write

Kαβ(1, 2;ω) =
∫

dω′ Sαβ(1, 2;ω′)
ω − ω′ + iδ

(19)

so Im K is directly related to S. The main task is to calculate S and then the real part of the
kernel is obtained as the principal part, i.e.

Re Kαβ(1, 2;ω) = P
∫

dω′ Sαβ(1, 2;ω′)
ω − ω′ . (20)

For practical calculations, it is suitable to use Bloch basis functions Bqr for the space
variables [25]. Using the static and local potential for the screened potential W we get for the
vertex equation[

δrp − WrtKαβtp (q, ω)
]
 
ps

j,αβ(q;ω) = WrtKαβts (q, ω) (21)

where

Wrs = 〈Bqr |W(r, r′ = r;ω = 0)|Bqs〉
Kαβrs (q, ω) = 〈Bqr |Kαβ(r, r′;ω)|Bqs〉
 rsj,αβ(q;ω) = 〈Bqr | j,αβ(r, r′;ω)|Bqs〉.

(22)

The q-component of the response function is obtained by taking the matrix element

Rij (q, ω) =
∫

d3r d3r ′ exp(−iq · r)Rij (r, r
′;ω) exp(iq · r′)

= − σ iβασ jαβ〈q|Bqr〉
[Kαβrs (q, ω) + T αβrs (q, ω)

] 〈Bqs |q〉 (23)

where

〈q|Bqr〉 =
∫

d3r exp(−iq · r)Bqr (r) (24)

and schematically

T = K = K[1 − WK]−1WK. (25)

We have developed a scheme using a localized product basis [25], based on the linear muffin-tin
orbital (LMTO) method within the atomic sphere approximation [26]. The number of basis
functions used is 40 per atom. The number of k-points in the entire zone is more than 40 000,
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which corresponds to 1000 points in the irreducible zone. The delta function in the imaginary
part of kernel is replaced by a Gaussian

(
√
πσ)−1exp(−ω2/σ 2). (26)

We have used this technique rather than the tetrahedron method because we wish to investigate
the effects of broadening on the spectra.

The spin-wave spectrum is given by Im R−+(q, ω) ∼ Im Rxx(q, ω) and the spin-wave
excitation energy ωq can be identified with the position of the main peak in Im R−+(q, ω) (see
appendix A).

3. Results and discussion

3.1. Ni(100)

The experimental dispersion of Ni along (1 0 0) exhibits two branches between about (0.2 0 0)
and (0.6 0 0) [13]. The experimental dispersion ends at (0.6 0 0) due the broadening of the
spin-wave excitation peak as it approaches the ZB as indicated by the large error bar. The large
broadening makes it difficult to detect the presence of spin-wave excitations. The dispersion
for small q shows the expected quadratic behaviour for ferromagnetic systems.

The dispersion has been calculated before by a number of authors [9, 10, 14]. The most
recent calculation [12] using TD DFT is capable of reproducing the acoustic branch quite well
but the calculated optical branch shows a large discrepancy with experiment. TD DFT formally
can give the exact spin-wave excitation spectra provided that one has the exact time-dependent
exchange–correlation potential. In practice, however, the calculations are performed within
the adiabatic LDA and the generalized gradient approximation (GGA) [27] leading to possible
errors. The local nature of the exchange–correlation kernel and possible errors in the Kohn–
Sham eigenvalues are the two main consequences of an approximate exchange–correlation
potential.

In an ordinary LDA calculation for Ni the exchange splitting for states at the top of the
occupied band is overestimated by a factor of two compared to experiment (0.3 eV versus
0.6 eV) [15]. The discrepancy is mainly due to self-energy effects, not properly taken into
account in the LDA. Consequently, a Stoner spin-flip process (described by Sαβ with α �= β)
costs too much in energy when using the LDA eigenvalues. To investigate the role of the
one-particle band-structure we first calculate the spin-wave spectra using the ordinary LDA
band-structure. The results are similar to those of Savrasov [12,28] as expected. In agreement
with experiment [13], the spin-wave dispersion curve exhibits two branches. However, as
already mentioned, the energy of the optical spin-wave mode is much too large. This was
suggested to be due to a poor treatment of the dynamical exchange correlation in the GGA,
which has the same problem as the local and static exchange correlation kernel within the LDA.

According to experiment and a recent calculation [29], the exchange splitting of Ni should
be one half of that of the LDA. We therefore decrease the exchange splitting by one half, which
has the consequence of reducing the energy for a Stoner spin-flip process also by a factor of one
half. The corresponding spin-wave dispersion curve is shown in figure 2. A drastic reduction
in the energy of the optical spin-wave branch is found, leading to a very good agreement
with the experiment of Mook and Paul [13]. The existence of two spin-wave branches is still
maintained but the optical mode is lowered and it coincides with the experimental curve. The
main difference between the calculated dispersion and the experiment is that the calculated
low-energy acoustic branch is disappearing for slightly smaller q-values. The reason for this
could be related to the use of broadening in our calculations which smears out the possible
presence of a two-peak structure in the spectra.
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It is interesting to note that the spin-wave excitation energy ωq is merely constant for
q > 0.6(1, 0, 0)2π/a. The present result strongly indicates that the main source of problems
in the TD DFT calculation can be traced back to the wrong LDA eigenvalues for Ni, in particular
the exchange splitting. This is also supported by the fact that for Fe, where the LDA eigen-
values are in agreement with photoemission data, no reduction in the exchange splitting is
necessary as shown later. Moreover, the TD DFT results are also in good agreement with
experiment.
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Figure 2. Spin-wave dispersion along (100) for nickel. Black boxes corresponds to the experiment
by Mook and Paul. Error bars are indicated by vertical solid lines. Also shown (black circles) are
the optical modes resulting from calculations by Savrasov [12]. The empty circles correspond to
the present calculations. The Gaussian broadening σ in equation (26) is 0.02 eV.

We now discuss the origin of the two branches. From the equation for the response
function, a double-peak structure in the spin-wave spectra may arise either from a complicated
band-structure implicitly contained in the kernel K or from a strong energy dependence in W .
Our results suggest that it is mainly the band-structure that is responsible for the presence of
the two branches since we have used a static W in the calculations. Typically, Im K is peaked
at about the average exchange-splitting energy corresponding to the Stoner spin-flip excitation
where an electron from the majority channel is excited into the minority channel. Due to
correlations, 1 − W Re K and Im K can both become zero or small at an energy below the
Stoner peak. This gives rise to a collective excitation or spin waves. Generally speaking, the
appearance of more than one spin-wave excitation, like the double-peak structure in the spin-
wave spectra of Ni, implies the presence of additional structure in Im K below the Stoner peak.

In figures 3 and 4 we show a typical matrix element for 1 − W Re K and Im K for the
case where we used a band-structure with a reduced exchange splitting. Not displayed are the
Stoner peaks located at approximately 0.3 eV. Additional structures below the Stoner peak are



7624 K Karlsson and F Aryasetiawan

  -4.00000

  -3.50000

  -3.00000

  -2.50000

  -2.00000

  -1.50000

  -1.00000

  -0.50000

   0.00000

   0.50000

0.0 0.1 0.2 0.3

ar
b.

 u
ni

ts

eV

�

  -1.40000

  -1.20000

  -1.00000

  -0.80000

  -0.60000

  -0.40000

  -0.20000

   0.00000

   0.20000

   0.40000

0.0 0.1 0.2 0.3

ar
b.

 u
ni

ts

eV

�

Figure 3. The i = j = 1 matrix element of 1 − W Re K
(solid line) and that of W Im K (dashed line) for nickel;
q = 0.0625(1, 0, 0)2π/a. The structure pointed at by a
small hand is explained in the text.

Figure 4. The i = j = 1 matrix element of 1 − W Re K
(solid line) and that of W Im K (dashed line) for nickel;
q = 0.25(1, 0, 0)2π/a. The structure pointed at by a
small hand is explained in the text.

clearly visible; these give rise to the double-peak structure leading to the two branches in the
dispersion.

The double peak is most distinctly observed for q = 0.25(1, 0, 0)2π/a in figure 5.
Due to a large density of states around the Fermi level which is mainly of 3d character,
d–d transitions (hopping from the occupied majority-spin to the unoccupied minority-spin
channel) are enhanced and result in the small peak around 0.1 eV in W Im K. This in turn
gives rise to a weak dip structure in 1 − W Re K via the Kramers–Kronig relation. For
q ∼ (0.15–0.3, 0, 0)2π/a the dip structure in 1 − W Re K is located close to zero and con-
sequently there will be two peaks in the spin-wave excitation spectra. The presence of the
double-peak structure is rather sensitive to both the position and intensity of the smaller
peak. Thus for smaller and larger q-values the dip structure does not give rise to any poles in
(1 − W Re K)−1 as illustrated in figure 3. For large q, it is actually the position of the main
peak in W Im K that determines the spin-wave spectra.

The lower acoustic branch does not extend to the zone boundary, as also found exp-
erimentally. The physical interpretation is that the spin-wave excitations merge with the
Stoner excitations as the former approaches the zone boundary with increasing wave vector.
The Stoner excitations exist in principle at all energies but the main excitations are centred
around the average exchange-splitting energy. The linewidth of the spin-wave excitations is
determined by Im K which increases with energy to form the Stoner peak. As the wave vector
increases, the spin-wave energies at which W Im K and 1 − W Re K are zero or small also
increase, so the linewidth increases accordingly.
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Figure 5. Spin-wave excitation spectra of nickel for q = x(1, 0, 0)2π/a. The presence of the two-
peak structure corresponding to the double branch in the spin-wave dispersion is clearly visible.
The Gaussian broadening σ in equation (26) is 0.02 eV.

3.2. Ni(111)

Considering the cubic symmetry of Ni, one expects the spin-wave dispersion to be isotropic as
confirmed by the experimental spectra. However, there is one puzzling feature in the spin-wave
dispersion along the (111) direction: only one branch is observed, unlike in the (100) direction,
and calculations by Savrasov [12] seem to confirm this. It is feasible that the double branch in
the spin-wave dispersion is due to a complicated nesting structure of the Fermi surface which
is sensitive to the direction in k-space. On the other hand, the experimental resolution along
the (111) direction is known to be worse than that along the (100) direction, so such a double-
peak structure in the spin-wave spectra may be too fine to be observable [13]. It is therefore
interesting to perform calculations to achieve a better understanding of this ambiguous feature.
In numerical calculations, we can use an arbitrary ‘resolution’ by adjusting the broadening of
the Gaussian. We have calculated the spin-wave dispersion along (111) using several different
broadenings and the results are shown in figures 6 and 7. We adopt the same reduction in
the exchange splitting as in the (100) direction. Using the same broadening as for the (100)
direction we can clearly distinguish a prominent double peak in the spin-wave spectra. The
results reveal that there is clearly an underlying double-peak structure which becomes smeared
out when a larger broadening is used. The peak resulting from a larger broadening falls in
between the two peaks corresponding to the smaller broadening. Therefore we have good
reasons to believe that there also exist two branches along the (111) direction. The separation
between the two peaks is actually so large (∼70 meV) that it should not be too difficult to
observe with better instruments whether the double-peak structure really exists.
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Figure 6. Spin-wave dispersion along (111) for
nickel. Black boxes correspond to the experiment by
Mook and Paul. The empty circles correspond to the
present calculations with a Gaussian broadening σ in
equation (26) equal to 0.08 eV.

Figure 7. Spin-wave excitation spectra of nickel for
q = 0.1875(1, 1, 1)2π/a for different broadenings.

3.3. Fe(110)

The experimental spin-wave dispersion of Fe does not appear to show anything peculiar [20,21].
Unlike for Ni, the dispersion only shows one branch. Previous calculations by Cooke et al [9]
and Savrasov [12] are in agreement with this experimental result. One difference in the
theoretical calculations is that Cooke et al found the dispersion to vanish towards the ZB
whereas Savrasov found that the dispersion persisted to the ZB. In the Cooke et al calculations
it was observed for q = 0.4(1, 0, 0)2π/a that the spin-wave linewidth increased dramatically,
and in addition a high-energy optical spin-wave mode was found at ∼360 meV. In a more
recent work by Blackman, Morgan, and Cooke [16], several branches were found persisting
out to the ZB; however, the optical branch was too high in energy.

To further test our formalism, we also calculated the spin-wave dispersion and spectra of
Fe. The LDA exchange splitting for Fe compares well with the experimental one (2.2 eV), so
no reduction for the exchange splitting is introduced. Up to the available experimental data
taken by Lynn [20], our results shown in figure 8 are in good agreement with experiment. In
accordance with Savrasov [12], the spin-wave excitations persist out to the ZB, as indicated in
figure 9. In fact, recent measurements [21] followed the spin-wave excitations to the ZB, and
the observed energy at the ZB was ∼350 meV, in agreement with our predictions.

Within the experimental sensitivity there is no sign of two branches. But surprisingly,
we found a gap in the spin-wave dispersion at q = 0.25(1, 1, 0)2π/a with a substantially
lower energy than that of the optical mode found in [9, 16], as can be seen in figure 10.
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Figure 8. Spin-wave dispersion along (110) for iron.
Black boxes correspond to the experiment by Lynn and
the empty circles to the present calculations with a
Gaussian broadening in equation (26) equal to 0.08 eV.

Figure 9. Spin-wave excitation spectra of iron for q
close to the zone boundary. Decreasing spin-wave height
corresponds to increasing q, where q = x(1, 1, 0)2π/a
with x = 0.406 25, 0.468 75 and 0.5, respectively.

A very interesting work on the temperature-dependent magnetization of Fe and Ni was
recently published by Ododo and Anyakoha [22] where they analysed experimental data
regarding the variation of magnetization with temperature. In order to explain the experimental
magnetization curve, they concluded that there should exist a gap in the spin-wave dispersion
at q = 0.25(1, 1, 0)2π/a and 170 meV, in perfect agreement with our findings. Considering
that the double-peak structure in the calculated spectra shown in figure 10 is not as prominent
as in the case of Ni, it is not surprising that such a structure may be difficult to observe
experimentally. Our calculations and the analysis of Ododo and Anyakoha, however, give
strong support for the presence of the gap in the dispersion. It is worth mentioning here that a
spin-wave energy gap has also been found for some heavy rare-earth metals [30].

4. Concluding remarks

We have calculated the spin-wave spectra and dispersions in Ni and Fe using a newly developed
Green’s function formalism. In the present calculations, the simplest approximation equivalent
to the RPA is used but the formalism is rather general and it allows for straightforward
improvements beyond the RPA. The formalism treats localized and itinerant electrons on
the same footing, unlike the frozen-magnon approach which makes an assumption about the
localized nature of the spin. Since the magnetic response function is calculated explicitly,
an arbitrary broadening can be used in the calculations which allows for a much smaller



7628 K Karlsson and F Aryasetiawan

10

20

30

40

50

60

0.1 0.2 0.3

ar
b.

 u
ni

ts

eV

x = 0.28125

x = 0.21875

x = 0.25

Figure 10. Spin-wave excitation spectra of iron for
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‘resolution’ than the experimental one. This is in contrast to the Sternheimer approach used
in TD DFT which requires a relatively large damping factor to achieve convergence.

We summarize below a number of findings from the present study:

• The calculated spin-wave dispersion of Ni(100) exhibits a double branch as also found
experimentally and in previous calculations. Using the standard LDA band-structure the
lower acoustic branch is found to be in good agreement with experiment but the energy of
the optical branch is a factor of two too large compared with experiment. Reducing the
exchange splitting by a factor of two leads to a much better agreement with experiment.
Thus, it is reasonable to conclude that it is mainly the band-structure that determines the
dispersion rather than the frequency dependence and nonlocality of W .

• The acoustic branch of Ni(100) does not extend to the zone boundary as also confirmed
experimentally.

• The calculated spin-wave dispersion of Ni(111) also shows a double branch which is not
observed experimentally. The double branch is found only when a small broadening is
used in the calculations. It is feasible that the experimental resolution is too low for
observing the double branch.

• For Fe, a gap in the dispersion is found midway along �–N. This gap is not observed
experimentally but an analysis of the temperature-dependent magnetization has predicted
a similar gap at the same wave vector. Recent measurements on spin-wave dispersions in
4f systems have also found a similar gap. Consequently, we have good reasons to believe
that such a gap actually exists.

It would be interesting to apply the present formalism to other ferromagnetic systems and
to antiferromagnetic materials. Work along these lines is now in progress.
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Appendix. Neutron cross section

The differential cross section for inelastic neutron scattering from a system of electrons is
given by [31]

d2σ

d3 dω
= 1

2π

(
e2g

mc2

)2
pf

pi

∑
ij

(δij − eiej )
∫

e−iωt 〈Si(q, 0)Sj (−q, t)〉 dt (A.1)

where pi and pf are the incident and scattered wave vectors, respectively, and e = q/|q| with
q = pi − pf . The neutron energy loss is ω = (p2

i − p2
f )/2M , m andM are the electron and

neutron masses, respectively, and g is the neutron magnetic moment. Equation (A.1) takes into
account the neutron–electron spin interaction only, since the interaction of a neutron and the
translational (orbital) motion of the electrons in narrow energy bands are usually negligible.
The spin operator Si(q, t) is given in the Heisenberg picture with

Si(q, 0) ≡ Si(q) =
∫

e−iq·r7†(r)Si7(r) d3r (A.2)

where 7(r) is the two-component electron creation operator and Si = 1
2σ

i . The appropriate
Green function to consider is defined by

iG−+(q, t) = 〈T [S−(q, t)S+(−q, 0]〉 ≡ G>−+(q, t)θ(t) +G<−+(q, t)θ(−t). (A.3)

Using the invariance of the trace of a product of operators under their cyclic permutation,
we note that
1

2π

∫
e−iωt 〈Si(q, 0)Sj (−q, t)〉 dt = 1

2π

∫
e−iωt 〈Si(q,−t)Sj (−q, 0)〉 dt

= 1

2π

∫
eiωt 〈Si(q, t)Sj (−q, 0)〉 dt ≡ G>ij (q, ω) (A.4)

By defining the spectral function Aij (q, t) as

Aij (q, t) ≡ 〈Si(q, t)Sj (−q, 0)− Sj (−q, 0)Si(q, t)〉 = G>ij (q, t)−G<ij (q, t) (A.5)

we obtain

G>ij (q, ω) = [1 + n(ω)]Aij (q, ω)

G<ij (q, ω) = n(ω)Aij (q, ω).
(A.6)

Here we have used

G>ij (q, ω) = eβωG<ij (q, ω) (A.7)

which is a consequence of the fact that

〈Si(q, t)Sj (−q, 0)〉 = 〈Sj (−q, 0)Si(q, t + iβ)〉 (A.8)

due to the invariance of the trace of a product of operators under their cyclic permutation. The
occupation factor is given by

n(ω) = (eβω − 1)−1. (A.9)



7630 K Karlsson and F Aryasetiawan

The spin-wave contribution to the total cross section is given by the i = j = x and
i = j = y terms. We obtain then for the cross section

d2σ

d3 dω
=

(
e2g

mc2

)2
pf

pi

[
(1 − e2

x)G
>
xx(q, ω) + (1 − e2

y)G
>
yy(q, ω)

]
. (A.10)

Using

S+(q) ≡ Sx(q) + iSy(q) S−(q) ≡ Sx(q)− iSy(q) (A.11)

we find G>xx(q, t) = G>yy(q, t) with

G>xx(q, t) = 1

4

[〈S+(q, t)S−(−q, 0)〉 + 〈S−(q, t)S+(−q, 0)〉] = 1

4

[
G>+−(q, t) +G>−+(q, t)

]
.

(A.12)

We have assumed that 〈S−S−〉 = 0 and 〈S+S+〉 = 0. The cross section then reads

d2σ

d3 dω
= 1

4

(
e2g

mc2

)2
pf

pi
(1 + e2

z )
[
G>−+(q, ω) +G>+−(q, ω)

]

= 1

4

(
e2g

mc2

)2
pf

pi
(1 + e2

z )(1 + n(ω))
[
A−+(q, ω) + A+−(q, ω)

]
. (A.13)

It is straightforward to show that G>+−(q, ω) and G>−+(q, ω) are real quantities. By using the
identity ∫

〈DB(t)〉eiωt dt = e−βω
∫

〈B(t)D〉eiωt dt (A.14)

one can extract

G>+−(q, ω) = eβωG>−+(−q,−ω). (A.15)

By using this relation one can easily show that equation (A.13) satisfies the condition of detailed
balance: [

d2σ

d3 dω

]
q,ω

= eβω
[

d2σ

d3 dω

]
−q,−ω

(A.16)

and the cross section reduces to

d2σ

d3 dω
= 1

4

(
e2g

mc2

)2
pf

pi
(1 + e2

z )(1 + n(ω))
[
A−+(q, ω)− A−+(−q,−ω)]

= 1

4

(
e2g

mc2

)2
pf

pi
(1 + e2

z )
[
(1 + n(ω))A−+(q, ω) + n(−ω)A−+(−q,−ω)] . (A.17)

The information about the spin-wave excitations is contained in A−+(q, ω). In fact,
A−+(r, r

′;ω) is given in paper I (equation (104)), where we concluded that the spin-wave
spectrum was given by peaks in A−+(q, ω) ∼ Im R−+(q, ω). Physically, A−+(q, ω) cor-
responds to a process where the neutron loses energy (ω > 0; magnon creation), and
A+−(q, ω) ∼ Im R+−(q, ω) to a process where the neutron gains energy (ω < 0; magnon
annihilation). If we neglect the contribution arising from Stoner excitations, we have
A−+(q, ω) = δ(ω − ωq). In that case,

d2σ

d3 dω
∼ [
(1 + n(ω))δ(ω − ωq) + n(−ω)δ(ω + ωq)

]
(A.18)

where we have used ωq = ω−q. For low temperature, the magnon creation process clearly
dominates because n is vanishing.
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